Construction of ground-state preserving sparse lattice models for predictive materials simulations

نویسندگان

  • Wenxuan Huang
  • Alexander Urban
  • Ziqin Rong
  • Zhiwei Ding
  • Chuan Luo
  • Gerbrand Ceder
چکیده

First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since this property is not guaranteed by default. In this paper, we present a systematic and mathematically sound method to obtain cluster expansion models that are guaranteed to preserve the ground states of their reference data. The method builds on the recently introduced compressive sensing paradigm for cluster expansion and employs quadratic programming to impose constraints on the model parameters. The robustness of our methodology is illustrated for two lithium transition metal oxides with relevance for Li-ion battery cathodes, i.e., Li2xFe2(1−x)O2 and Li2xTi2(1−x)O2, for which the construction of cluster expansion models with compressive sensing alone has proven to be challenging. We demonstrate that our method not only guarantees ground-state preservation on the set of reference structures used for the model construction, but also show that out-of-sample ground-state preservation up to relatively large supercell size is achievable through a rapidly converging iterative refinement. This method provides a general tool for building robust, compressed and constrained physical models with predictive power.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ultimate Frustration in Classical Lattice-Gas Models

We compare tiling systems with square-like tiles and classical lattice-gas models with translation-invariant, finite-range interactions between particles. For a given tiling, there is a natural construction of a corresponding lattice-gas model. With oneto-one correspondence between particles and tiles, we simply assign a positive energy to pairs of nearest-neighbor particles which do not match ...

متن کامل

Exactly Solvable Models for Self-Assembly

The field of self-assembly studies the spontaneous formation of order from preexisting components. It holds the promise of fabricating tomorrows materials and devices not by traditional methods, but by designing building blocks that will act as supramolecular “atoms” and form the desired structures without external input. Theoretical understanding in self-assembly has previously been achieved m...

متن کامل

An Irregular Lattice Pore Network Model Construction Algorithm

Pore network modeling uses a network of pores connected by throats to model the void space of a porous medium and tries to predict its various characteristics during multiphase flow of various fluids. In most cases, a non-realistic regular lattice of pores is used to model the characteristics of a porous medium. Although some methodologies for extracting geologically realistic irregular net...

متن کامل

Stable Quasicrystalline Ground States

We give a strong evidence that noncrystalline materials such as quasicrystals or incommensurate solids are not exceptions but rather are generic in some regions of a phase space. We show this by constructing classical lattice gas models with translationinvariant, finite-range interactions and with a unique quasiperiodic ground state which is stable against small perturbations of two-body potent...

متن کامل

Lattice numerical simulations of hydraulic fractures interacting with oblique natural interfaces

The hydraulic fracturing propagation is strongly influenced by the existence of natural fractures. This is a very important factor in hydraulic fracturing operations in unconventional reservoirs. Various studies have been done to consider the effect of different parameters such as stress anisotropy, toughness, angle of approach and fluid properties on interaction mechanisms including crossing, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017